PDF下载 分享
[1]姚建铨,钟凯,徐德刚.太赫兹空间应用研究与展望[J].空间电子技术,2013,(2):1-16.[doi:10.3969/j.issn.1674-7135.2013.02.001]
 YAO Jian-quan,ZHONG Kai,XU De-gang.Study and Outlook of Terahertz Space Applications[J].Space Electronic technology,2013,(2):1-16.[doi:10.3969/j.issn.1674-7135.2013.02.001]
点击复制

太赫兹空间应用研究与展望

参考文献/References:

[1] P. H. Siegel, Terahertz Technology, IEEE Transactions on Microwave Theory and Techniques, 50, 910(2002).
[2] F. Bradley, X. Ch. Zhang, Materials for terahertz science and technology, Physics, 32, 287(2003).
[3] A. G. MKELZ, A. Roitberg and E. J. Heilweil, Chemical Physics Letters, 2000, 320: 42~48
[4] Q. Chen, Z. P. Jiang, X. C. Zhang, The interaction between terahertz radiation and biological tissue, Pro. SPIE, 1999, 3616: 98~105
[5] P. R. Smith, D. H. Auston, and M. C. Nuss, Subpicosecond photoconducting dipole antennas, IEEE Journal of quantum electronics, 1988, 24: 255~260
[6] 谢旭,钟华,袁韬等,使用太赫兹技术研究航天飞机失事的原因,物理,2003,32(9):583~584
[7] 王少宏,许景周,汪力等,物理,2001,30(10):612~615
[8] 马晓菁,代斌,葛敏,太赫兹辐射的研究及应用,化工时刊,2006,20(12):50~53
[9] 郑新,刘超,太赫兹技术的发展及在雷达和通信系统中的应用(I),微波学报,2010,26(6):1-6
[10] 李晋,太赫兹雷达系统总体与信号处理方法研究,电子科技大学博士学位论文,2010
[11] C. J. Higginsb, N. A. Salmona, Passive Millimetre Wave Imaging for Ballistic Missile Launch Detection, Millimetre Wave and Terahertz Sensors and Technology, Cardiff, Wales, Sep. 2008
[12] R. W. McMillan, C. W. Trussell, R. A. Bohlander, et al, An experimental 225 GHz pulsed coherent radar, IEEE Trans. Microwave Theory Techn. 1991, 39: 555-562
[13] Goyette T M, Dickinson J C, Waldman J, et al. Fully polarimetric W-band ISAR imagery of scale-model tactical targets using a 1. 56-THz compact range . Proc. of SPIE, 2001, 4382: 229-240.
[14] R. J. Dengler, F.Maiwald, and P. H. Siegel, A Compact 600 GHz Electronically Tunable Vector Measurement System For Submillimeter Wave Imaging, IEEE MTT-S Int. Digest, San pp:1923–1926, Francisco, Jun. 2006.
[15] R. J. Dengler, K. B. Cooper, G. Chattopadhyay, I. Mehdi, E. Schlecht, A. Skalare, C. Chen, and P. H. Siegel, 600 Ghz Imaging Radar With 2cm Range Resolution, IEEE MTT-S Int. Digest, Honolulu, pp:1371–1374, Jun. 2007.
[16] K. B. Cooper, R. J. Dengler, G. Chattopadhyay, E. Schlecht, J. Gill, A. Skalare, I. Mehdi, and P. H. Siegel, A High-Resolution Imaging Radar at 580 GHz, IEEE Microwave and Wireless Components Letters, Vol. 18, No. 1, pp:64-66, Jan. 2008.
[17] C. A. Weg, W. V. Spiegela, R. Hennebergerb, Fast Active Thz Camera With Range Detection By Frequency Modulation, Terahertz Technology and Applications II, Proceeding of SPIE, Vol. 7215, Orlando, 2009.
[18] C. A. Weg, W. V. Spiegel, R. Henneberger, et al, Fast Active THz Cameras with Ranging Capabilities, Journal of Infrared Millimeter and Terahertz Waves, Vol. 30, No. 8, pp:1281-1296, 2009
[19] 姚建铨,迟楠,杨鹏飞等,太赫兹通信技术的研究与展望,中国激光,2009,36(9):2213-2233
[20] 吴竹,太赫兹波通信系统仿真技术研究,浙江大学硕士学位论文,2010
[21] A. Hirata, T. Kosugi, H. Takahashi et al, 120-GHz-band millimeter-wave photonic wireless link for 10-Gb/s data transimission, IEEE trans. Microwave Theory Techn., 2006, 54: 1937-1944.
[22] T. Nagatsuma, A. Hirata, 10Gbit/s wireless link technology using the 120GHz band. NTT Technical Review, 2004: 58-62.
[23] T. Kosugi, M. Tokumitsu, T. Enoki et al, 120-GHz Tx/Rx chipset for 10-Gbit/s wireless applications using 0.1-μm-gage InP HEMTs, IEEE Compound Semiconductor Integrated Circuit Symposium, 2004, 171-174.
[24] R. Yamaguchi, A. Hirata, T. Kosugi et al, 10-Gbit/s MMIC wireless link exceeding 800 meters, IEEE Radio and Wireless Symposium, 2008, 695-698.
[25] A. Hirata, M. Harada, T. Nagatsuma, 120-GHz wireless link using photonic techniques for generation, modulation and emission of millimeter-wave signals, J. Lightwave Techn., 2003, 21: 2145-2153
[26] A. Hirata, T. Kosugi, N. Meisl et al, High-directivity photonic emitter using photodiode module integrated with HEMT amplifier for 10-Gbit/s wireless link, IEEE trans. Microwave Theory Techn., 2004, 52: 1843-1850.

[27] T. Nagatsuma, Exploring sub-terahertz waves for future wireless communications, IEEE IRMMW-THz 2006, Joint 31st International Conference. 4.

[28] F. Nakajima, T. Furuta, H. Ito. High power terahertz wave generation using a resonant antenna integrated uni-travelling-carrier photodiode, Nippon Telegraph and Telephone Corporation, 2006, 40: 1297-1298.
[29] T. Nagatsuma, A. Hirata, R. Yamaguchi et al, Sub-terahertz wireless communications technologies, IEEE ICECom 2005, 18th International Conference. 1-4.
[30] Nagatsuma, T., Song, H. J., Fujimoto, Y., Miyake, K., Hirata, A., Ajito, K., ... & Kado, Y. (2009, October). Giga-bit wireless link using 300–400 GHz bands. In Microwave Photonics, 2009. MWP'09. International Topical Meeting on (pp. 1-4). IEEE.
[31] Song, H. J., Ajito, K., Wakatsuki, A., Muramoto, Y., Kukutsu, N., Kado, Y., & Nagatsuma, T. (2010, October). Terahertz wireless communication link at 300 GHz. In Microwave Photonics (MWP), 2010 IEEE Topical Meeting on (pp. 42-45). IEEE. [32] R. Piesiewicz, M. Jacob, M. Koch et al, Performance analysis of future multigigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments, IEEE J. Sel. Top. Quantum Electron., 2008, 14: 421-430.
[33] M. Koch, Terahertz frequency detection and identification of materials and objects, Terahertz Communications: A 2020 vision. 2007, 325-338.
[34] T. Kleine-Ostmann, K. Pierz, G. Hein et al, Audio signal transmission over THz communication channel using semiconductor modulator, Electron. Lett., 2004, 40: 124-126.
[35] T. Kleine-Ostmann, P. Dawson, K. Pierz et al, Room-temperature operation of an electrically driven terahertz modulator, Appl. Phys. Lett., 84: 3555-3557.
[36] R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz et al, Concept and perspectives of future ultra broadband THz communication systems, IEEE, 2006, 1-4244-0400-2/06: 96.
[37] N. Krumbholz, K. Gerlach, F. Rutz et al, Omnidirectional terahertz mirrors: A key element for future terahertz communication systems, Appl. Phys. Lett., 2006, 88: 202905-1-3.
[38] T. Kurner, R. Piesiewicz, M. Koch et al, Propagation models, measurements and simulations for wireless communication systems beyond 100 GHz. IEEE, 2007, 1-4244-0767-2/07: 108-111
[39] R. Piesiewicz, M. Jocob, J. Schoebel et al, Influence of hardware parameters on the performance of future indoor THz communication systems under realistic propagation conditions, EuMA, 2007, 978-87487-001-9: 1606-1609.
[40] R. Piesiewicz, C. Jansen, D. Mittleman et al, Scattering analysis for the modeling of THz communication systems, IEEE trans. Antennas and Propagation, 2007, 55: 3002-3009
[41] C. Jastrow, K. Munter, R. Piesiewicz et al, 300 GHz transmission system. Electron. Lett., 2008, 44: 213-214.
[42] I. A. Ibraheem, N. Krumbholz, D. Mittleman et al, Low-dispersive dielectric mirrors for future wireless terahertz communication systems, IEEE Microwave and Wireless Components Letters, 2008, 18: 67-69.
[43] I. A. Ibraheem, N. Krumbholz, D. Mittleman et al, Low-dispersive dielectric reflectors for future wireless terahertz communication systems. IEEE Microwave and Wireless Components Letters, 2008, 978-1-4244-1438-3: 930-931.
[44] M. Koch, Terahertz applications and techniques. OSA, 2006, 1-55752-830-6.
[45] C. Jansen, R. Piesiewicz, D. Mittleman et al, The impact of reflections from stratified building materials on the wave propagation in future indoor terahertz communication systems. IEEE trans. Antennas Propagation, 2008, 55(5): 1413-1419.
[46] Chen, Z., Tan, Z. Y., Han, Y. J. et al, Wireless communication demonstration at 4.1 THz using quantum cascade laser and quantum well photodetector. Electronics letters, 2011, 47(17), 1002-1004.
[47] 陈镇, 谭智勇, 王长,曹俊诚. 基于 THz QCL 和 THz QWP 的数字通信演示系统. 第十届全国光电技术学术交流会论文集, 2012.
[48] http://www.iaeej.com/config/newsfiles/2012-02-0811/e4和雷达技术研究取得重要突破-修改.doc
[49] 周胜利,张存林,太赫兹遥感技术综述,航天返回与遥感,2009,30:32-35
[50] 戴宁,葛进,胡淑红,张雷,太赫兹探测技术在遥感应用中的研究进展,中国电子科学研究院学报,2009,3:231-237
[51] 岳桢干,太赫兹波遥感技术简介,红外,2011,32(6):47-48
[52] 林栩凌,阮宁娟,周峰,太赫兹技术空间应用研究探讨,航天返回与遥感,2012,33(1):75-80
[53] 李宇晔, 王新柯, 张平, 等. 模拟沙尘暴条件下的太赫兹辐射传输研究. 激光和红外, 2008, 38( 9): 921-924.
[54] T. Corti, B.P. Luo, Q. Fu, et al. The Impact of Cirrus Clouds on the Tropical Troposphere-to-stratosphere Transport. Atmos. Chem. Phys., 2006(6): 2539-2547. [55] C. Emde, S. A. Buehler, P. Eriksson et al, The Effect of Cirrus Clouds on Microwave Limb Radiances. Atmospheric Research, 2004, 72(1-4): 383-401. [56] J. W. Waters, Submillimeter-wave length Heterodyne Spectroscopy and Remote Sensing of the Upper Atmosphere. Proceedings of the IEEE, 1992, 80(11): 1679-1701. [57] From Spitzer to Herschel and Beyond: The Future of Far-Infrared Space Astrophysics [EB/OL]. http://safir.jp.lnasa.gov/Beyond Spitzer Conf/conf Proceedings. shtml2004. [58] J. W. Waters, W. G. Read, L. Froidevaux et al, The UARS and EOS Microwave Limb Sounder(MLS) Experiments. Journal of the Atmospheric Science, 1999, 56(2): 194-218. [59] S. Gulkis, M. Frerking, J. Crovisier, et al, MIRO: Microwave Instrument for Rosetta Orbiter. Space Science Reviews, 2007, 128 (1-4) : 561-597. [60] V. P. Koshelets, S. V. Shitov, A. B. Ermakov et al, Superconducting Integrated Receiver for TELIS. IEEE Transactions on Applied Superconductivity, 2005, 15(2): 960-963. [61] 沈京玲,张存林,太赫兹波无损检测新技术及其应用,无损检测,2005,27(3):146-147 [62] 周燕,连续太赫兹波成像技术的检测应用研究,首都师范大学硕士学位论文,2007 [63] 张雯,雷银照,太赫兹无损检测的进展,仪器仪表学报,2008,29(7):1563-1568 [64] D. M. Mittleman, R. H. Jacobsen, C. Nussm, T-ray imaging. IEEE J. Sel Top. Quantum Electron, 1996, 2: 679-692. [65] NASA Marshall Space Flight Center. NASA facts: thermal protection system, NASA Report FS-2004-08-97-M SFC. Huntsville: MSFC, 2004. [66] H. Zhong, J. Xu, X. Xie et al, Nondestructive defect identification with terahertz time-of-flight tomography. IEEE Sens. J. , 2005, 5(2): 203-207 [67] D. Zimdars, J. A. Valdmanis, J. S. White et al, Technology and applications of terahertz imaging non-destructive examination: inspection o f space shuttle sprayed on foam insulation. Review of Progress in Quantitative NDE, Golden, 2004: 570-577. [68] W. P. Winfree, E. I. Madaras, Detection and characterization of flaws in sprayed on foam insulation with pulsed terahertz frequency electromagnetic waves. 41st AIAA /ASME /SAE /ASEE Joint Propulsion Conference and Exhibit Event, Tucson, USA, 2005: AIAA-2005-3629. [69] X. Xie, H. Zhong, T. Yuan et al, Terahertz imaging of defects in space shuttle foam insulation. Physics, 2003, 32(9): 583-584. [70] J. L. Walker, J. D. Richter, Nondestructive evaluation of foam insulation for the external tank return to flight. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Sacramento, United States, 2006: AIAA 2006-4601. [71] W. P. Winferee, F. Anastasir, J. P. Seebo. Crack detection in sprayed on foam insulation with pulsed terahertz frequency electromagnetic waves. Review of Progress in Quantitative NDE, Portland, 2006: 148. [72] N. Karpowicz, H. Zhong, C. Zhang et al, Compact continuous-wave subterahertz system for inspection applications . Appl. Phys. Lett, 2005, 86: 054105. [73] F. Anastasir, I. Madaras, Terahertz NDE for under paint corrosion detection and evaluation. Review of Progress in Quantitative NDE, Brunswick, USA, 2005: 515-522. [74] A. Redo-Sanchez, N. Karpowicz, J. Xu et al, Dam age and defect inspection with terahertz waves. 4th International Workshop on Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization, Dartmouth, 2006: 67-78. [75] J. Beckmann, H. Richter, U. Zscherpel et al, Imaging capability o f terahertz and millimeter-wave instrumentations for NDT of polymer materials. 9th European Conference on NDT, Berlin, Germany, 2006: We.2.8.1. [76] G. Zhao, H. Sun, Y. Tian et al, Optical system for application of THz spectroscopy and TH z imaging. Proc. of SPIE, 2006, 6047: 60470U. [77] Z. W. Zhang, Study of pulsed THz time-domain spectroscopic imaging and THz continuous wave imaging. Beijing: Capital Normal University, 2006: 39-47. [78] Z. Zhang, W. Cui, G. Zhao et al, Data processing methods for terahertz transmitted spectra l imaging Proc. of SPIE, 2006, 6027: 60270K. [79] C. Zhang, Material inspection using THz and thermal wave. Review of Progress in Quantitative NDE, Portland, USA, 2006: 386-394. [80] 孙博,姚建铨,基于光学方法的太赫兹辐射源,中国激光,2006,33(10):1349-1359 [81] K. Zhong, J. Yao, D. Xu et al, Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO, Opt. Commun., 2010, 283: 3520-3524 [82] Y. Geng, X. Tan, X. Li, and J. Yao, Compact and widely tunable terahertz source based on a dual-wavelength intracavity optical paramentric oscillation, Appl. Phys. B, 2010, 99: 181-185 [83] X. L. Cao, Y. Y. Wang, D. G. Xu et al, THz-wave difference frequency generation by phase-matching in GaAs/AlxGa1-xAs asymmetric quantum well, Chin. Phys. B, 2012, 29(1): 014207 [84] Z. Y. Li, J. Q. Yao, D. G. Xu et al, High-power terahertz radiation from surface-emitted THz-wave parametric oscillator, Chin. Phys. B, 2011, 20(5): 054207 [85] Z. Y. Li, J. Q. Yao, D. G. Xu et al, Output enhancement of a THz wave based on a surface-emitted THz-wave parametric oscillator, Chin. Phys. Lett., 2011, 28(11): 114201 [86] P. Liu, D. Xu, H. Jiang et al, Theory of monochromatic terahertz generation via Cherenkov phase-matched difference frequency generation in LiNbO3 crystal, J. Opt. Soc. Am. B, 2012, 29(9): 2425-2430 [87] H. Liu, J. Yao, D. Xu et al, Characteristics of photonic band gaps in woodpile three-dimensional terahertz photonic crystals, Opt. Express, 2007, 15(2): 695-703 [88] Y. F. Geng, X. L. Tan, P. Wang et al, Transmission loss and dispersion in plastic terahertz photonic band-gap fibers, Appl. Phys. B, 2008, 91: 333-336 [89] J. Wang, J. Yao, H. Chen et al, Ultrahigh birefringent polymer terahertz fiber based on a near-tie unit, J. Opt. 2011, 13: 055402 [90] J. Li and J. Yao, Controllable terahertz wave attenuator, Microwave Opt. Techn. Lett., 2008, 50(7): 1810-1812 [91] J. Li and J. Yao, Novel optical controllable terahertz wave switch, Opt. Commun., 2008, 281(23): 5697-5700 [92] 姚建铨, 汪静丽, 钟凯等, THz 辐射大气传输研究和展望, 光电子?激光, 2010, 21(10): 1582-1588. [93] Cui Haixia, Yao Jianquan, Wan Chunming, The study on THz wave propagation feature in atmosphere, Proc. SPIE – Photon. Asia, 7854: 785404. [94] Wang R, Yao JQ, Xu DG et al, The physical theory and propagation model of THz atmospheric propagation, J. Phys.: Conf. Ser., 2011, 276: 012223. [95] Cui Haixia, Yao Jianquan, Wan Chunming, The study on THz wave propagation feature in atmosphere, J. Phys.: Conf. Ser., 2011, 276: 012225. [96] P. B. Bing, J. Q. Yao, D. G. Xu et al, High-quality continuous-wave imaging with a 2.53 THz optical pumped terahertz laser and pyroelectric detector, Chin. Phys. Lett., 2010, 27(12): 124209.

相似文献/References:

[1]边明明,王世涛,雷利华,等.太赫兹技术及空间应用国内外发展现状研究[J].空间电子技术,2013,(4):80.[doi:10.3969/j.issn.1674-7135.2013.04.019]
 BIAN Ming-ming,WANG Shi-tao,LEI Li-hua,et al.Study of the Domestic and Abroad Development Status of THz Technology and its Space Application[J].Space Electronic technology,2013,(2):80.[doi:10.3969/j.issn.1674-7135.2013.04.019]
[2]王晓海.太赫兹雷达技术空间应用与研究进展[J].空间电子技术,2015,(1):7.
 Wang Xiaohai.Application in Space and Research Progress of Terahertz Radar Technology[J].Space Electronic technology,2015,(2):7.

备注/Memo

姚建铨,男,1939年1月出生,研究生学历,中国科学院院士,教授,天津大学激光与光电子研究所所长。研究方向为全固态激光器及非线性光学频率变换技术,太赫兹技术,物联网技术等。 钟凯,男,1984年10月出生,工学博士,天津大学讲师。研究方向为全固态激光器及太赫兹技术。 徐德刚,男,1974年2月出生,工学博士,天津大学副教授。研究方向为全固态激光器及太赫兹技术。

更新日期/Last Update: 2013-06-25