YAO Jian-quan,ZHONG Kai,XU De-gang.Study and Outlook of Terahertz Space Applications[J].Space Electronic technology,2013,(2):1-16.[doi:10.3969/j.issn.1674-7135.2013.02.001]
太赫兹空间应用研究与展望
- Title:
- Study and Outlook of Terahertz Space Applications
- Keywords:
- Terahertz (THz); Space application; Radar; Communication; Remote sensing; Imaging; Non-destructive testing
- 摘要:
- 近年来,我国在空间技术领域取得了举世瞩目的成就,多项技术已经达到国际先进甚至领先水平。要保持我国在空间领域的优势地位,必须加强适用于空间技术及应用的新方法、新手段。太赫兹(THz)技术为空间技术的发展提供了新的途径,因此,对THz波空间应用技术进行研究非常必要。本文介绍了THz波的性质及特点,综述了THz技术在雷达、通信、遥感及航天工业等方面的应用,并对THz波在空间应用领域进行了展望,希望能够促进THz技术在该领域的研究及应用技术的进步。
- Abstract:
- Our country has achieved great progress in space technologies in recent years, with many areas reaching the world advanced even world leading level. New measuring methods and tools for space applications are needed to keep our leading position. The development of terahertz (THz) technology provides us a new approach, and therefore, the research on space uses of terahertz wave is of great importance. In this paper, we introduce the properties of THz wave, review the applications of THz in the areas of radar, communication, remote sensing and space industry, and give an outlook of THz in space applications. We hope it can accelerate the progress of THz technologies in space areas.
参考文献/References:
[1] P. H. Siegel, Terahertz Technology, IEEE Transactions on Microwave Theory and Techniques, 50, 910(2002).
[2] F. Bradley, X. Ch. Zhang, Materials for terahertz science and technology, Physics, 32, 287(2003).
[3] A. G. MKELZ, A. Roitberg and E. J. Heilweil, Chemical Physics Letters, 2000, 320: 42~48
[4] Q. Chen, Z. P. Jiang, X. C. Zhang, The interaction between terahertz radiation and biological tissue, Pro. SPIE, 1999, 3616: 98~105
[5] P. R. Smith, D. H. Auston, and M. C. Nuss, Subpicosecond photoconducting dipole antennas, IEEE Journal of quantum electronics, 1988, 24: 255~260
[6] 谢旭,钟华,袁韬等,使用太赫兹技术研究航天飞机失事的原因,物理,2003,32(9):583~584
[7] 王少宏,许景周,汪力等,物理,2001,30(10):612~615
[8] 马晓菁,代斌,葛敏,太赫兹辐射的研究及应用,化工时刊,2006,20(12):50~53
[9] 郑新,刘超,太赫兹技术的发展及在雷达和通信系统中的应用(I),微波学报,2010,26(6):1-6
[10] 李晋,太赫兹雷达系统总体与信号处理方法研究,电子科技大学博士学位论文,2010
[11] C. J. Higginsb, N. A. Salmona, Passive Millimetre Wave Imaging for Ballistic Missile Launch Detection, Millimetre Wave and Terahertz Sensors and Technology, Cardiff, Wales, Sep. 2008
[12] R. W. McMillan, C. W. Trussell, R. A. Bohlander, et al, An experimental 225 GHz pulsed coherent radar, IEEE Trans. Microwave Theory Techn. 1991, 39: 555-562
[13] Goyette T M, Dickinson J C, Waldman J, et al. Fully polarimetric W-band ISAR imagery of scale-model tactical targets using a 1. 56-THz compact range . Proc. of SPIE, 2001, 4382: 229-240.
[14] R. J. Dengler, F.Maiwald, and P. H. Siegel, A Compact 600 GHz Electronically Tunable Vector Measurement System For Submillimeter Wave Imaging, IEEE MTT-S Int. Digest, San pp:1923–1926, Francisco, Jun. 2006.
[15] R. J. Dengler, K. B. Cooper, G. Chattopadhyay, I. Mehdi, E. Schlecht, A. Skalare, C. Chen, and P. H. Siegel, 600 Ghz Imaging Radar With 2cm Range Resolution, IEEE MTT-S Int. Digest, Honolulu, pp:1371–1374, Jun. 2007.
[16] K. B. Cooper, R. J. Dengler, G. Chattopadhyay, E. Schlecht, J. Gill, A. Skalare, I. Mehdi, and P. H. Siegel, A High-Resolution Imaging Radar at 580 GHz, IEEE Microwave and Wireless Components Letters, Vol. 18, No. 1, pp:64-66, Jan. 2008.
[17] C. A. Weg, W. V. Spiegela, R. Hennebergerb, Fast Active Thz Camera With Range Detection By Frequency Modulation, Terahertz Technology and Applications II, Proceeding of SPIE, Vol. 7215, Orlando, 2009.
[18] C. A. Weg, W. V. Spiegel, R. Henneberger, et al, Fast Active THz Cameras with Ranging Capabilities, Journal of Infrared Millimeter and Terahertz Waves, Vol. 30, No. 8, pp:1281-1296, 2009
[19] 姚建铨,迟楠,杨鹏飞等,太赫兹通信技术的研究与展望,中国激光,2009,36(9):2213-2233
[20] 吴竹,太赫兹波通信系统仿真技术研究,浙江大学硕士学位论文,2010
[21] A. Hirata, T. Kosugi, H. Takahashi et al, 120-GHz-band millimeter-wave photonic wireless link for 10-Gb/s data transimission, IEEE trans. Microwave Theory Techn., 2006, 54: 1937-1944.
[22] T. Nagatsuma, A. Hirata, 10Gbit/s wireless link technology using the 120GHz band. NTT Technical Review, 2004: 58-62.
[23] T. Kosugi, M. Tokumitsu, T. Enoki et al, 120-GHz Tx/Rx chipset for 10-Gbit/s wireless applications using 0.1-μm-gage InP HEMTs, IEEE Compound Semiconductor Integrated Circuit Symposium, 2004, 171-174.
[24] R. Yamaguchi, A. Hirata, T. Kosugi et al, 10-Gbit/s MMIC wireless link exceeding 800 meters, IEEE Radio and Wireless Symposium, 2008, 695-698.
[25] A. Hirata, M. Harada, T. Nagatsuma, 120-GHz wireless link using photonic techniques for generation, modulation and emission of millimeter-wave signals, J. Lightwave Techn., 2003, 21: 2145-2153
[26] A. Hirata, T. Kosugi, N. Meisl et al, High-directivity photonic emitter using photodiode module integrated with HEMT amplifier for 10-Gbit/s wireless link, IEEE trans. Microwave Theory Techn., 2004, 52: 1843-1850.
[27] T. Nagatsuma, Exploring sub-terahertz waves for future wireless communications, IEEE IRMMW-THz 2006, Joint 31st International Conference. 4.
[28] F. Nakajima, T. Furuta, H. Ito. High power terahertz wave generation using a resonant antenna integrated uni-travelling-carrier photodiode, Nippon Telegraph and Telephone Corporation, 2006, 40: 1297-1298.
[29] T. Nagatsuma, A. Hirata, R. Yamaguchi et al, Sub-terahertz wireless communications technologies, IEEE ICECom 2005, 18th International Conference. 1-4.
[30] Nagatsuma, T., Song, H. J., Fujimoto, Y., Miyake, K., Hirata, A., Ajito, K., ... & Kado, Y. (2009, October). Giga-bit wireless link using 300–400 GHz bands. In Microwave Photonics, 2009. MWP'09. International Topical Meeting on (pp. 1-4). IEEE.
[31] Song, H. J., Ajito, K., Wakatsuki, A., Muramoto, Y., Kukutsu, N., Kado, Y., & Nagatsuma, T. (2010, October). Terahertz wireless communication link at 300 GHz. In Microwave Photonics (MWP), 2010 IEEE Topical Meeting on (pp. 42-45). IEEE.
[32] R. Piesiewicz, M. Jacob, M. Koch et al, Performance analysis of future multigigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments, IEEE J. Sel. Top. Quantum Electron., 2008, 14: 421-430.
[33] M. Koch, Terahertz frequency detection and identification of materials and objects, Terahertz Communications: A 2020 vision. 2007, 325-338.
[34] T. Kleine-Ostmann, K. Pierz, G. Hein et al, Audio signal transmission over THz communication channel using semiconductor modulator, Electron. Lett., 2004, 40: 124-126.
[35] T. Kleine-Ostmann, P. Dawson, K. Pierz et al, Room-temperature operation of an electrically driven terahertz modulator, Appl. Phys. Lett., 84: 3555-3557.
[36] R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz et al, Concept and perspectives of future ultra broadband THz communication systems, IEEE, 2006, 1-4244-0400-2/06: 96.
[37] N. Krumbholz, K. Gerlach, F. Rutz et al, Omnidirectional terahertz mirrors: A key element for future terahertz communication systems, Appl. Phys. Lett., 2006, 88: 202905-1-3.
[38] T. Kurner, R. Piesiewicz, M. Koch et al, Propagation models, measurements and simulations for wireless communication systems beyond 100 GHz. IEEE, 2007, 1-4244-0767-2/07: 108-111
[39] R. Piesiewicz, M. Jocob, J. Schoebel et al, Influence of hardware parameters on the performance of future indoor THz communication systems under realistic propagation conditions, EuMA, 2007, 978-87487-001-9: 1606-1609.
[40] R. Piesiewicz, C. Jansen, D. Mittleman et al, Scattering analysis for the modeling of THz communication systems, IEEE trans. Antennas and Propagation, 2007, 55: 3002-3009
[41] C. Jastrow, K. Munter, R. Piesiewicz et al, 300 GHz transmission system. Electron. Lett., 2008, 44: 213-214.
[42] I. A. Ibraheem, N. Krumbholz, D. Mittleman et al, Low-dispersive dielectric mirrors for future wireless terahertz communication systems, IEEE Microwave and Wireless Components Letters, 2008, 18: 67-69.
[43] I. A. Ibraheem, N. Krumbholz, D. Mittleman et al, Low-dispersive dielectric reflectors for future wireless terahertz communication systems. IEEE Microwave and Wireless Components Letters, 2008, 978-1-4244-1438-3: 930-931.
[44] M. Koch, Terahertz applications and techniques. OSA, 2006, 1-55752-830-6.
[45] C. Jansen, R. Piesiewicz, D. Mittleman et al, The impact of reflections from stratified building materials on the wave propagation in future indoor terahertz communication systems. IEEE trans. Antennas Propagation, 2008, 55(5): 1413-1419.
[46] Chen, Z., Tan, Z. Y., Han, Y. J. et al, Wireless communication demonstration at 4.1 THz using quantum cascade laser and quantum well photodetector. Electronics letters, 2011, 47(17), 1002-1004.
[47] 陈镇, 谭智勇, 王长,曹俊诚. 基于 THz QCL 和 THz QWP 的数字通信演示系统. 第十届全国光电技术学术交流会论文集, 2012.
[48] http://www.iaeej.com/config/newsfiles/2012-02-0811/e4和雷达技术研究取得重要突破-修改.doc
[49] 周胜利,张存林,太赫兹遥感技术综述,航天返回与遥感,2009,30:32-35
[50] 戴宁,葛进,胡淑红,张雷,太赫兹探测技术在遥感应用中的研究进展,中国电子科学研究院学报,2009,3:231-237
[51] 岳桢干,太赫兹波遥感技术简介,红外,2011,32(6):47-48
[52] 林栩凌,阮宁娟,周峰,太赫兹技术空间应用研究探讨,航天返回与遥感,2012,33(1):75-80
[53] 李宇晔, 王新柯, 张平, 等. 模拟沙尘暴条件下的太赫兹辐射传输研究. 激光和红外, 2008, 38( 9): 921-924.
[54] T. Corti, B.P. Luo, Q. Fu, et al. The Impact of Cirrus Clouds on the Tropical Troposphere-to-stratosphere Transport. Atmos. Chem. Phys., 2006(6): 2539-2547.
[55] C. Emde, S. A. Buehler, P. Eriksson et al, The Effect of Cirrus Clouds on Microwave Limb Radiances. Atmospheric Research, 2004, 72(1-4): 383-401.
[56] J. W. Waters, Submillimeter-wave length Heterodyne Spectroscopy and Remote Sensing of the Upper Atmosphere. Proceedings of the IEEE, 1992, 80(11): 1679-1701.
[57] From Spitzer to Herschel and Beyond: The Future of Far-Infrared Space Astrophysics [EB/OL]. http://safir.jp.lnasa.gov/Beyond Spitzer Conf/conf Proceedings. shtml2004.
[58] J. W. Waters, W. G. Read, L. Froidevaux et al, The UARS and EOS Microwave Limb Sounder(MLS) Experiments. Journal of the Atmospheric Science, 1999, 56(2): 194-218.
[59] S. Gulkis, M. Frerking, J. Crovisier, et al, MIRO: Microwave Instrument for Rosetta Orbiter. Space Science Reviews, 2007, 128 (1-4) : 561-597.
[60] V. P. Koshelets, S. V. Shitov, A. B. Ermakov et al, Superconducting Integrated Receiver for TELIS. IEEE Transactions on Applied Superconductivity, 2005, 15(2): 960-963.
[61] 沈京玲,张存林,太赫兹波无损检测新技术及其应用,无损检测,2005,27(3):146-147
[62] 周燕,连续太赫兹波成像技术的检测应用研究,首都师范大学硕士学位论文,2007
[63] 张雯,雷银照,太赫兹无损检测的进展,仪器仪表学报,2008,29(7):1563-1568
[64] D. M. Mittleman, R. H. Jacobsen, C. Nussm, T-ray imaging. IEEE J. Sel Top. Quantum Electron, 1996, 2: 679-692.
[65] NASA Marshall Space Flight Center. NASA facts: thermal protection system, NASA Report FS-2004-08-97-M SFC. Huntsville: MSFC, 2004.
[66] H. Zhong, J. Xu, X. Xie et al, Nondestructive defect identification with terahertz time-of-flight tomography. IEEE Sens. J. , 2005, 5(2): 203-207
[67] D. Zimdars, J. A. Valdmanis, J. S. White et al, Technology and applications of terahertz imaging non-destructive examination: inspection o f space shuttle sprayed on foam insulation. Review of Progress in Quantitative NDE, Golden, 2004: 570-577.
[68] W. P. Winfree, E. I. Madaras, Detection and characterization of flaws in sprayed on foam insulation with pulsed terahertz frequency electromagnetic waves. 41st AIAA /ASME /SAE /ASEE Joint Propulsion Conference and Exhibit Event, Tucson, USA, 2005: AIAA-2005-3629.
[69] X. Xie, H. Zhong, T. Yuan et al, Terahertz imaging of defects in space shuttle foam insulation. Physics, 2003, 32(9): 583-584.
[70] J. L. Walker, J. D. Richter, Nondestructive evaluation of foam insulation for the external tank return to flight. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Sacramento, United States, 2006: AIAA 2006-4601.
[71] W. P. Winferee, F. Anastasir, J. P. Seebo. Crack detection in sprayed on foam insulation with pulsed terahertz frequency electromagnetic waves. Review of Progress in Quantitative NDE, Portland, 2006: 148.
[72] N. Karpowicz, H. Zhong, C. Zhang et al, Compact continuous-wave subterahertz system for inspection applications . Appl. Phys. Lett, 2005, 86: 054105.
[73] F. Anastasir, I. Madaras, Terahertz NDE for under paint corrosion detection and evaluation. Review of Progress in Quantitative NDE, Brunswick, USA, 2005: 515-522.
[74] A. Redo-Sanchez, N. Karpowicz, J. Xu et al, Dam age and defect inspection with terahertz waves. 4th International Workshop on Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization, Dartmouth, 2006: 67-78.
[75] J. Beckmann, H. Richter, U. Zscherpel et al, Imaging capability o f terahertz and millimeter-wave instrumentations for NDT of polymer materials. 9th European Conference on NDT, Berlin, Germany, 2006: We.2.8.1.
[76] G. Zhao, H. Sun, Y. Tian et al, Optical system for application of THz spectroscopy and TH z imaging. Proc. of SPIE, 2006, 6047: 60470U.
[77] Z. W. Zhang, Study of pulsed THz time-domain spectroscopic imaging and THz continuous wave imaging. Beijing: Capital Normal University, 2006: 39-47.
[78] Z. Zhang, W. Cui, G. Zhao et al, Data processing methods for terahertz transmitted spectra l imaging Proc. of SPIE, 2006, 6027: 60270K.
[79] C. Zhang, Material inspection using THz and thermal wave. Review of Progress in Quantitative NDE, Portland, USA, 2006: 386-394.
[80] 孙博,姚建铨,基于光学方法的太赫兹辐射源,中国激光,2006,33(10):1349-1359
[81] K. Zhong, J. Yao, D. Xu et al, Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO, Opt. Commun., 2010, 283: 3520-3524
[82] Y. Geng, X. Tan, X. Li, and J. Yao, Compact and widely tunable terahertz source based on a dual-wavelength intracavity optical paramentric oscillation, Appl. Phys. B, 2010, 99: 181-185
[83] X. L. Cao, Y. Y. Wang, D. G. Xu et al, THz-wave difference frequency generation by phase-matching in GaAs/AlxGa1-xAs asymmetric quantum well, Chin. Phys. B, 2012, 29(1): 014207
[84] Z. Y. Li, J. Q. Yao, D. G. Xu et al, High-power terahertz radiation from surface-emitted THz-wave parametric oscillator, Chin. Phys. B, 2011, 20(5): 054207
[85] Z. Y. Li, J. Q. Yao, D. G. Xu et al, Output enhancement of a THz wave based on a surface-emitted THz-wave parametric oscillator, Chin. Phys. Lett., 2011, 28(11): 114201
[86] P. Liu, D. Xu, H. Jiang et al, Theory of monochromatic terahertz generation via Cherenkov phase-matched difference frequency generation in LiNbO3 crystal, J. Opt. Soc. Am. B, 2012, 29(9): 2425-2430
[87] H. Liu, J. Yao, D. Xu et al, Characteristics of photonic band gaps in woodpile three-dimensional terahertz photonic crystals, Opt. Express, 2007, 15(2): 695-703
[88] Y. F. Geng, X. L. Tan, P. Wang et al, Transmission loss and dispersion in plastic terahertz photonic band-gap fibers, Appl. Phys. B, 2008, 91: 333-336
[89] J. Wang, J. Yao, H. Chen et al, Ultrahigh birefringent polymer terahertz fiber based on a near-tie unit, J. Opt. 2011, 13: 055402
[90] J. Li and J. Yao, Controllable terahertz wave attenuator, Microwave Opt. Techn. Lett., 2008, 50(7): 1810-1812
[91] J. Li and J. Yao, Novel optical controllable terahertz wave switch, Opt. Commun., 2008, 281(23): 5697-5700
[92] 姚建铨, 汪静丽, 钟凯等, THz 辐射大气传输研究和展望, 光电子?激光, 2010, 21(10): 1582-1588.
[93] Cui Haixia, Yao Jianquan, Wan Chunming, The study on THz wave propagation feature in atmosphere, Proc. SPIE – Photon. Asia, 7854: 785404.
[94] Wang R, Yao JQ, Xu DG et al, The physical theory and propagation model of THz atmospheric propagation, J. Phys.: Conf. Ser., 2011, 276: 012223.
[95] Cui Haixia, Yao Jianquan, Wan Chunming, The study on THz wave propagation feature in atmosphere, J. Phys.: Conf. Ser., 2011, 276: 012225.
[96] P. B. Bing, J. Q. Yao, D. G. Xu et al, High-quality continuous-wave imaging with a 2.53 THz optical pumped terahertz laser and pyroelectric detector, Chin. Phys. Lett., 2010, 27(12): 124209.
相似文献/References:
[1]边明明,王世涛,雷利华,等.太赫兹技术及空间应用国内外发展现状研究[J].空间电子技术,2013,(4):80.[doi:10.3969/j.issn.1674-7135.2013.04.019]
BIAN Ming-ming,WANG Shi-tao,LEI Li-hua,et al.Study of the Domestic and Abroad Development Status of THz Technology and its Space Application[J].Space Electronic technology,2013,(2):80.[doi:10.3969/j.issn.1674-7135.2013.04.019]
[2]王晓海.太赫兹雷达技术空间应用与研究进展[J].空间电子技术,2015,(1):7.
Wang Xiaohai.Application in Space and Research Progress of Terahertz Radar Technology[J].Space Electronic technology,2015,(2):7.
备注/Memo
姚建铨,男,1939年1月出生,研究生学历,中国科学院院士,教授,天津大学激光与光电子研究所所长。研究方向为全固态激光器及非线性光学频率变换技术,太赫兹技术,物联网技术等。 钟凯,男,1984年10月出生,工学博士,天津大学讲师。研究方向为全固态激光器及太赫兹技术。 徐德刚,男,1974年2月出生,工学博士,天津大学副教授。研究方向为全固态激光器及太赫兹技术。